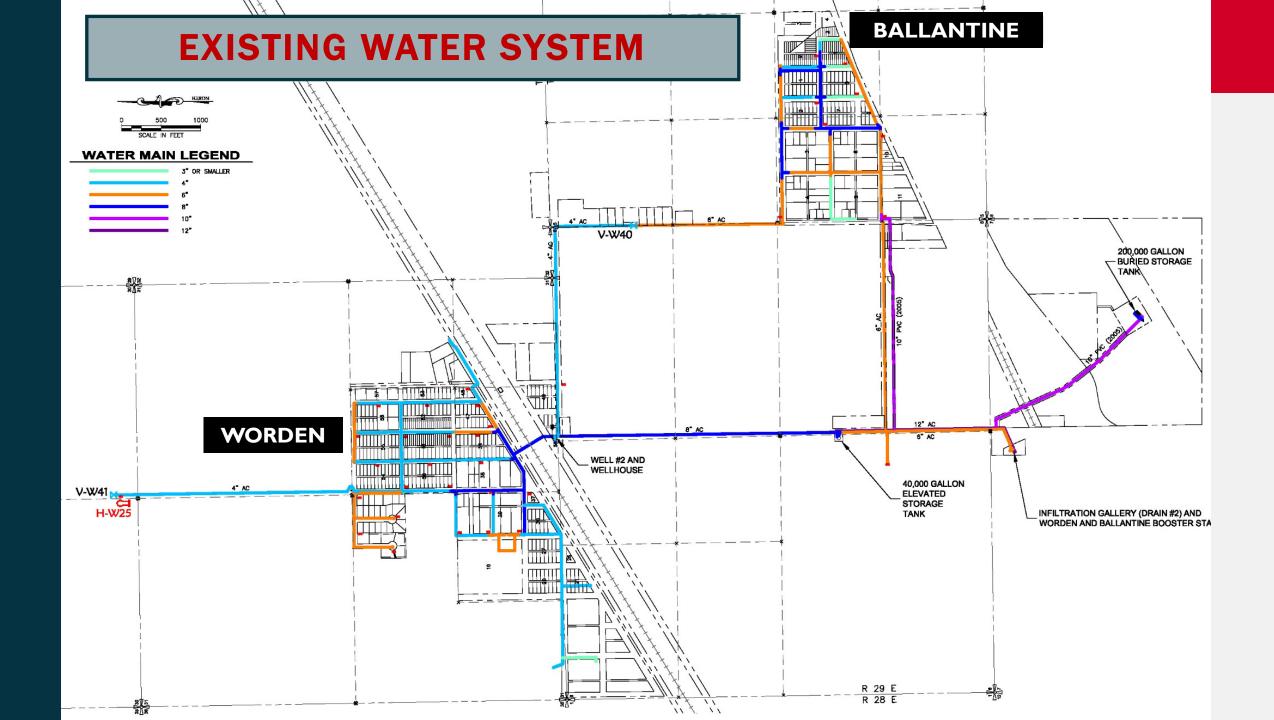

Water System Preliminary Engineering Report Alternatives Presentation


Crystal Bennett, PE Chad Hanson, PE

WHAT IS A PER?

- Preliminary Engineering Report
- Evaluation of <u>entire</u> system for <u>existing</u> and <u>future</u> conditions
- Required by grant/loan funding agencies

GROWTH/CAPACITY

YEAR	POPULATION	AVERA DEM		MAXIMI DEM		PEAK HOUR DEMAND	
			gpm	gpd	gpm	gpm	
2019	972	80,719	57	161,438	112	224	
2042	1175	117,500	82	235,000	163	326	

* Populations based upon information from the Montana Department of Commerce Census & Economic Center

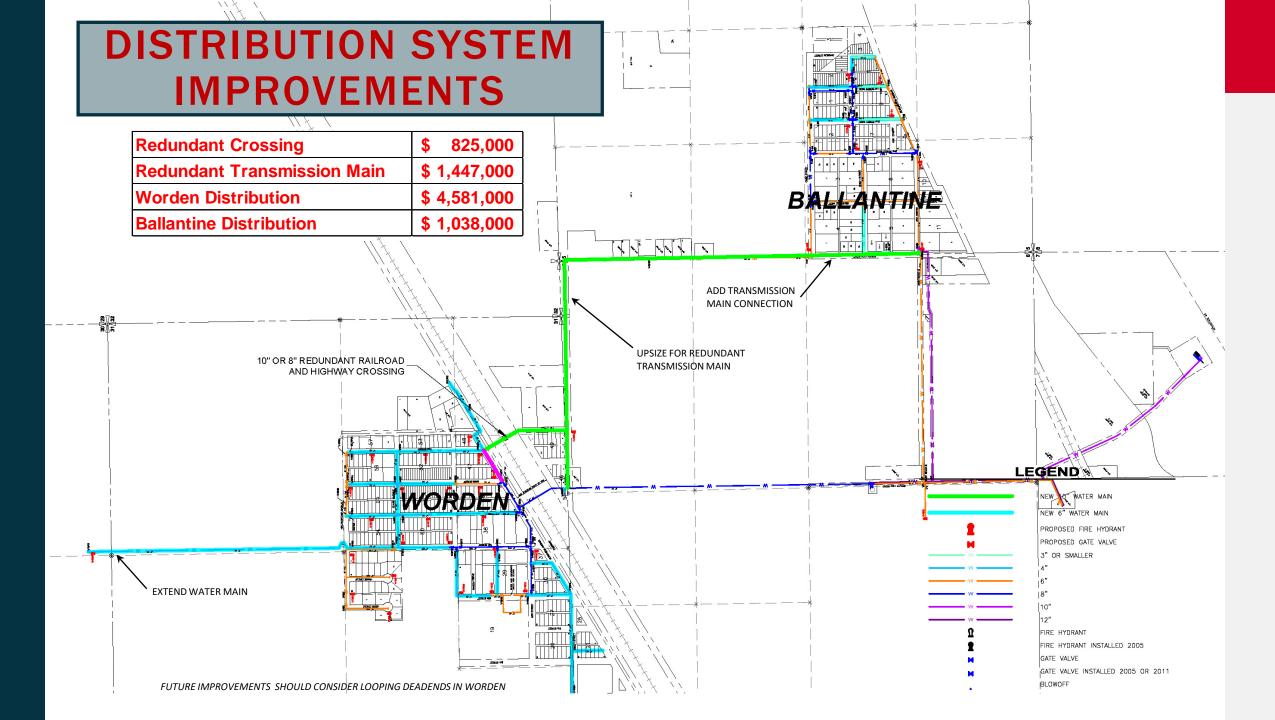
WATER STORAGE

(1) 40,000 gallon tower

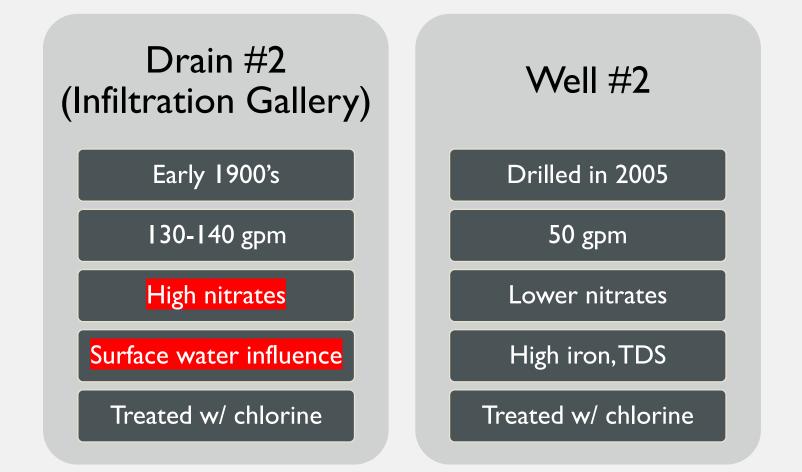
- Built in 1955
- Adequate condition

(2) 200,000 gallon buried tank

- Built in 2005
- Good condition
- Meets operational needs & residential fire flow needs
- Recommendation: Continue good maintenance & regular inspections/cleaning

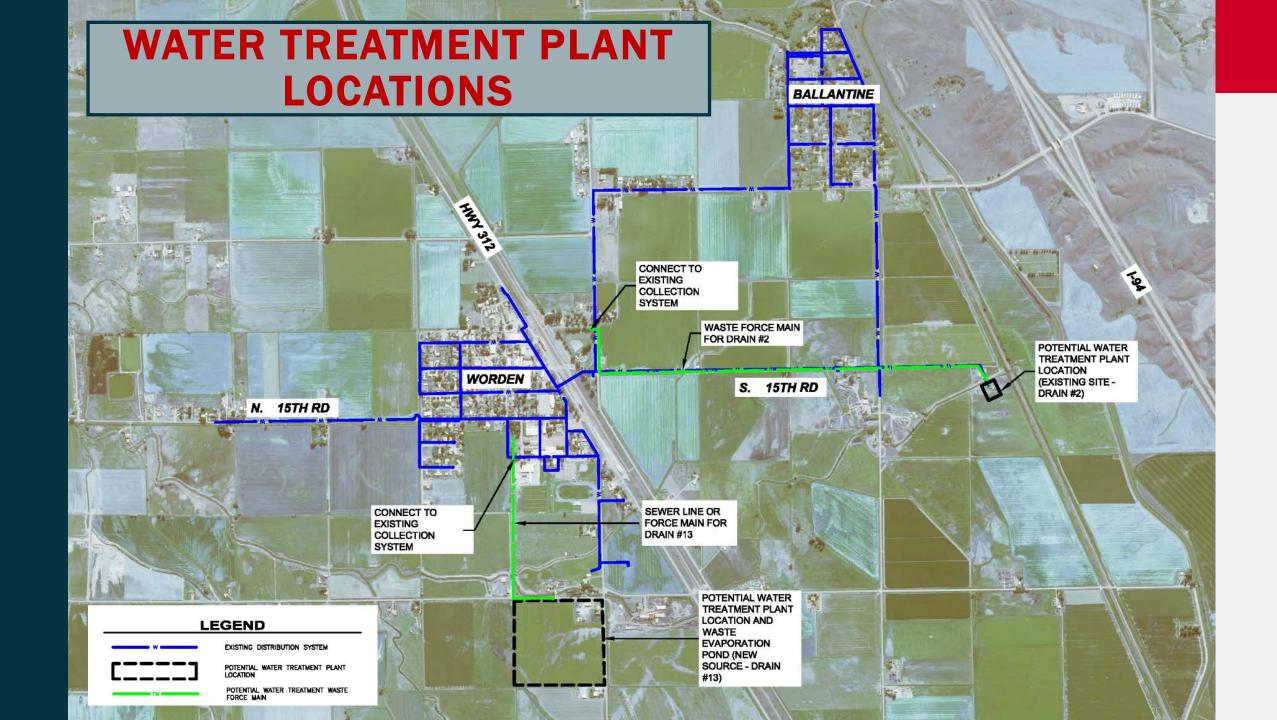

DISTRIBUTION SYSTEM

- Lack of redundancy to Worden
- Very limited fire flow
- Insufficiently spaced fire hydrants
- Undersized water mains (less than 6-inch)
 - >60% in Worden
 - >25% in Ballantine


Dino Sizo	Worden		Balla	ntine		nission ins	Total		
Pipe Size	AC (ft)	PVC (ft)	AC (ft)	PVC (ft)	AC (ft)	PVC (ft)	AC (ft)	PVC (ft)	
3"	0	0	888	1185	0	0	888	1185	
4"	15,318	528	412	643	3,268	0	18,998	1,171	
6"	1,777	5,243	4,383	1,181	5,586	0	11,746	6,424	
8"	505	2,030	0	3,416	6,180	119	6,685	5,565	
10"	0	0	0	0	0	5265	0	5265	
12"	0	0	0	0	2450	0	2450	0	
Total	17,600	7,801	5,683	6,425	17,484	5,384	40,767	19,610	
TUtar	25,401		12,	12,108		868	60,377		

Recommendations:

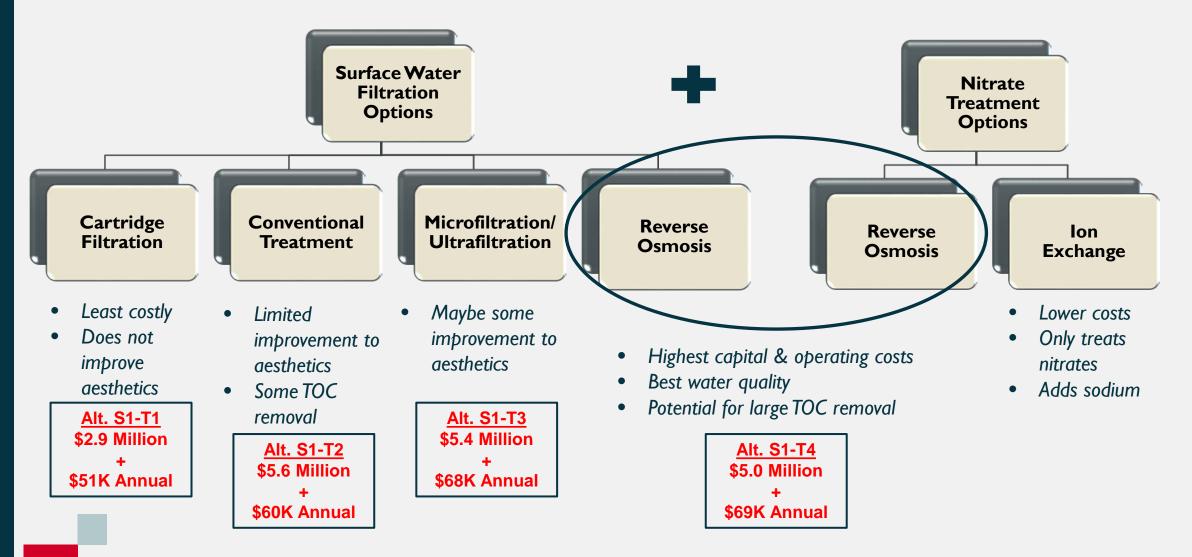
- Add redundancy to Worden
- Upsize and connect transmission main from Ballantine to Worden
- Upsize remaining distribution system


WATER SUPPLY

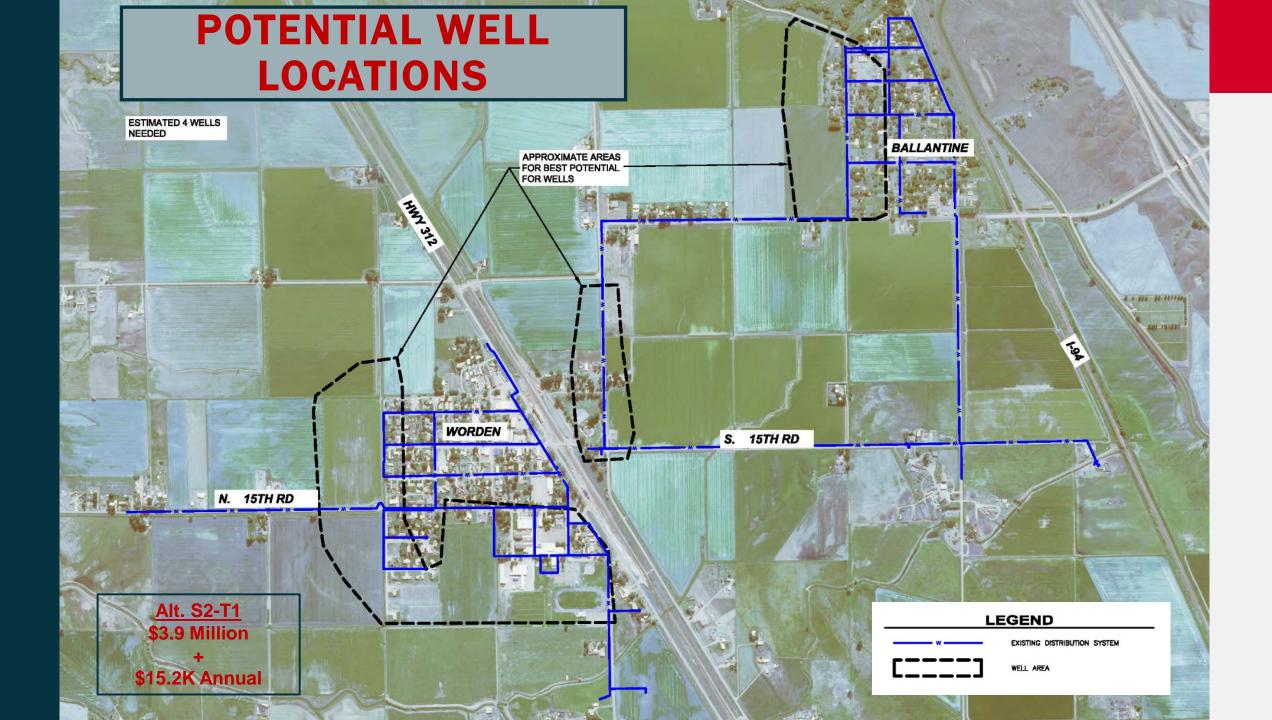
Drain #2 in violation of EPA's Safe Drinking Water Act, administered by Montana DEQ

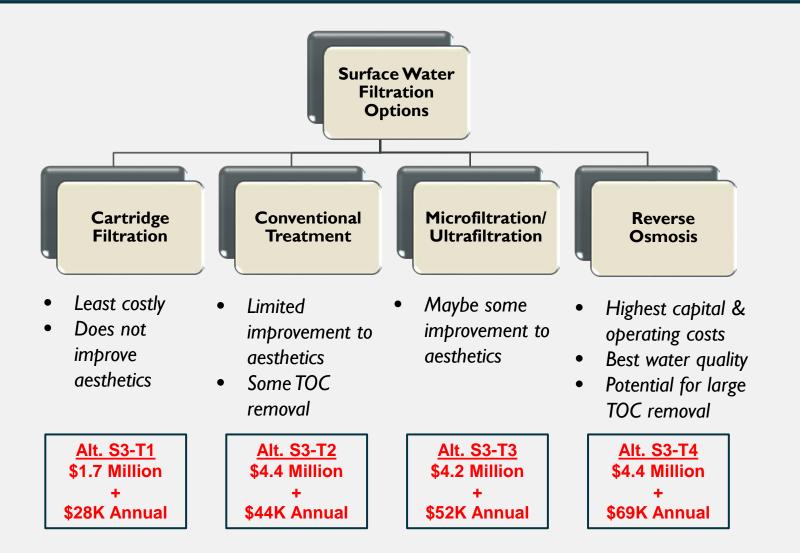
WATER SUPPLY OPTIONS CONSIDERED

- Alternatives SI: Existing Source
 - Eliminate nitrate source Not possible
 - Eliminate groundwater influence Not possible
 - Treat source (Drain #2)
- Alternatives S2: New Groundwater Source
 - Develop new wells
- Alternatives S3: New Surface Water Source
 - Yellowstone River Too costly
 - Creeks/Streams Not enough water
 - Other drains (Drain #13)

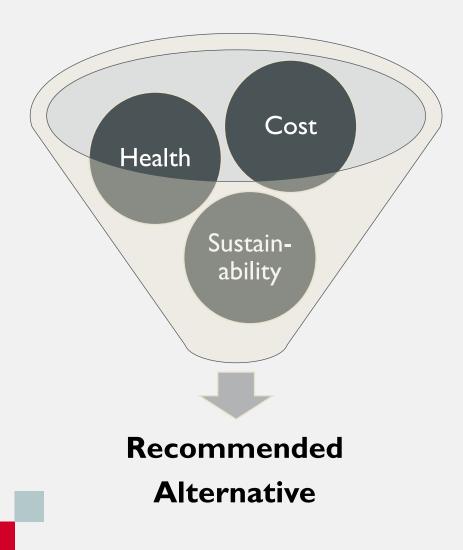

WATER QUALITY

				Existing	Sources	lew Sourc			
Parameter	MCL	SMCL	Units	Drain # 2	Well #2	Drain #13	Notes		
Alkalinity			mg/L	220	375	322	Higher helps regulate pH; too high could cause skin irritation & gastrointestinal issues		
Arsenic	0.01		mg/L	0.003	0.003	0.002			
Calcium			mg/L	93	86	97	Contributes to hard water		
Chloride		250	mg/L	21	18	15	Salty taste		
Fluoride	4	2	mg/L	0.7	0.52	0.5			
Hardness			mg/L	425	400 ¹	434	>180 considered very hard; scale deposits in plumbing and appliances; mineral deposits on dishes; poor soap performance; skin irritation and dryness		
Iron		0.3	mg/L	ND	3.48	ND	Rusty color; sediment; metallic taste; reddish or orange staining		
Magnesium			mg/L	48	45	46	Contributes to hard water		
Manganese		0.05	mg/L	0.002		0.009	Black to brown color; black staining; bitter		
Nitrate	10		mg/L	<u>12.4</u>	3.39	2.32	Blue baby syndrome		
Nitrite	1		mg/L	ND	ND	ND			
Total Organic Carbon (TOC)			mg/L	4.0		4.9	Can contribute to disinfection by-product		
рН			S.U.	7.8	7.6	7.8			
Sodium			mg/L	82	129	223	May start to have salty taste >200		
Total Dissolved Solids (TDS)		500	mg/L	775		1160	Hardness; deposits; colored water; staining; salty taste		
Sulfate		250	mg/L	340	250	557	Salty taste		
Turbidity			NTU	0.1		0.1	Measures cloudiness of water		
¹ Hardness for Well #2 was c	alculated	based or	n calcium	and magne	esium leve	ls			


FILTRATION PROCESSES AND PARTICLE SIZES


EXISTING SOURCE (DRAIN #2): TREATMENT OPTIONS

Notes: Pilot Study recommended with any treatment option; Alternatives do not include specific pretreatment for TOC



NEW SOURCE (DRAIN #13): TREATMENT OPTIONS

Notes: Pilot Study recommended with any treatment option; Alternatives do not include specific pretreatment for TOC

SELECTING AN ALTERNATIVE

DESCRIPTION	WEIGHTING FACTORS
Financial Feasibility/Life Cycle Cost	10
Public Health and Safety	9
Operations and Maintenance	8
Technical Feasibility/Land Acquisition	7
Sustainability/Future Compliance	6
Permitting	6
Social Impacts	5
Environmental Impacts	4

SELECTING AN ALTERNATIVE

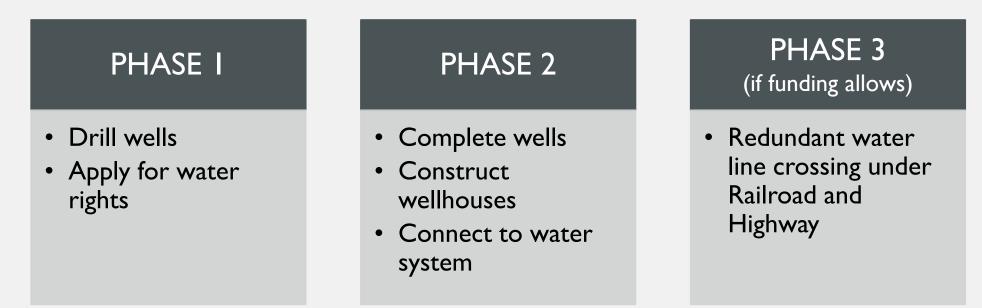
Alternative		Life Cyc	ele Cost	Public He Saf		Operatio Mainte		Tech Feasi Land Ace		Fut	nability/ ure liance	Perm	itting	Social I	mpacts	Environ Impa		TOTAL	RANK
		Weight:	10	Weight:	9	Weight:	8	Weight:	7	Weight:	6	Weight:	6	Weight:	5	Weight:	4		
		Score	Wtd.	Score	Wtd.	Score	Wtd.	Score	Wtd.	Score	Wtd.	Score	Wtd.	Score	Wtd.	Score	Wtd.		
SUPPLY	AND TREATMENT ALTERNATIVES																		
Existing	Source w/ Treatment Options																		
S1-T1	Cartridge, Ion Exchange	5.1	51	5.0	45	7.0	56	1.0	7	7.0	42	5.0	30	4.0	20	1.0	4	255	7
S1-T2	Conventional, Ion Exchange	1.7	17	8.0	72	2.0	16	1.0	7	7.0	42	5.0	30	1.0	5	5.0	20	209	9
S1-T3	Ultrafiltration, Ion Exchange	1.7	17	7.0	63	5.0	40	1.0	7	7.0	42	5.0	30	1.0	5	4.0	16	220	8
S1-T4	Reverse Osmosis	2.1	21	10.0	90	6.0	48	1.0	7	10.0	60	5.0	30	2.0	10	2.0	8	274	5
New We	ll Field																		
S2-T1	New Well Source	4.8	48	8.0	72	10.0	80	4.0	28	5.0	30	1.0	6	7.0	35	7.0	28	327	1
New So	urce w/ Treatment Options																		
S3-T1	Cartridge	8.3	83	5.0	45	8.0	64	6.0	42	5.0	30	5.0	30	5.0	25	1.0	4	323	2
S3-T2	Conventional	3.2	32	8.0	72	3.0	24	6.0	42	5.0	30	5.0	30	3.0	15	5.0	20	265	6
S3-T3	Ultrafiltration	3.2	32	7.0	63	6.0	48	6.0	42	5.0	30	5.0	30	3.0	15	4.0	16	276	4
S3-T5	Reverse Osmosis	2.6	26	10.0	90	6.0	48	6.0	42	10.0	60	5.0	30	2.0	10	2.0	8	314	3
DISTRIB	UTION SYSTEM ALTERNATIVES																		
D1	Add Redundant Line, Upsize to 6"	5.1	51	8.0	72	5.0	40	8.0	56	6.0	36	5.0	30	5.0	25	4.0	16	240	2
D2	Add Redundant Line, Upsize to 8"	4.9	49	10.0	90	5.0	40	8.0	56	7.0	42	5.0	30	3.0	15	4.0	16	252	1

It is important to note that the above scoring and weighting are subjective. Alternatives that score overall within 15 pts of each other may essentially hold the same degree of preference.

NEW GROUNDWATER WELLS

PROS

- Lowest annual O&M costs
- No change to operations or operator certifications


CONS

- No guarantee of finding land to drill
- No guarantee land available will yield enough or have low nitrates
- No guarantee that nitrates will not be problematic in future
- No improvement to water quality

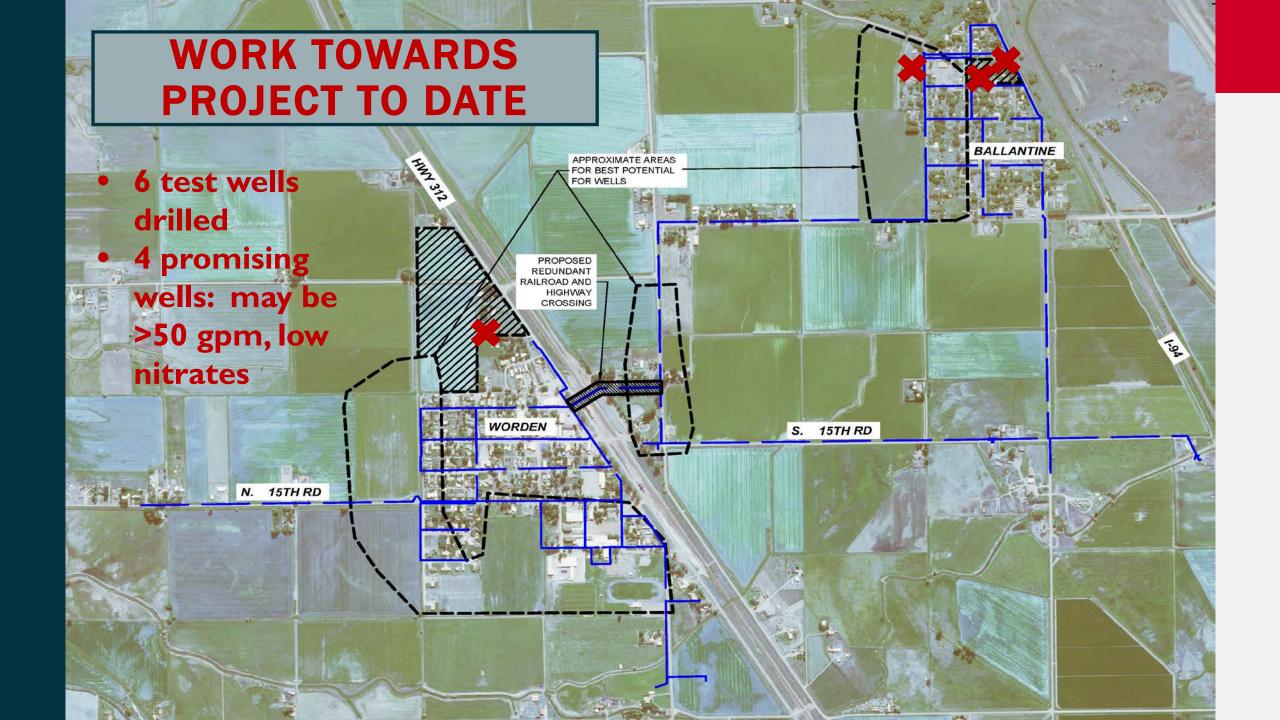
 will have high hardness, TDS, maybe high iron
- Water rights may be difficult

PHASING THE PROJECT

- Financial limitations for new wells and <u>all</u> distribution system improvements
- Need to address water supply as soon as possible
- Phased approach allows completion of highest priority improvements in quickest timeframe

TARGET RATES & FUNDING

Description	Used Currently	for RD & Previou 2010 Census	us MDOC Grants	Used Cu	Used Currently for MDOC Grants 2015 ACS				
	Ballantine	Worden	Combined	Ballantine	Worden	Combined			
Population	320	577	897	195	749	944			
Total Households	136	255	391	146	265	411			
Median Household Income	\$14,366	\$26,754	\$22,445	\$18,654	\$69,120 🤇	\$51,193			
Low & Moderate Income (%)	79%	46%	46% 58%		52%	59%			
Percent Poverty	0%	0%	0%		25%	24%			
For Rural Development: MHI < \$38,205 eligible for a MHI < \$47,757 eligible for a			SYSTEM		PERCENTAGE (%)	TARGET RATE	EXISTIN RATE		
.			ombined Target R	ate \$51,193	2.3%	\$98.12	\$80.10		
		Percent of	Target Rate				81.6%		


FUNDING THE PROJECT

PREFERRED FUNDING SOURCES	AMOUNT	NOTES			
RD**	(arant/loan (ombination	- Eligible for up to 75% grant - 40 Year Loan, 1.175% Interest			

** Other funding sources were considered including TSEP, CDBG, DNRC-RRGL, and DWSRF. RD is the most immediate source of funding which could fund entire project, allowing a project completion date in 2021, which could be at least one year sooner that utilizing other funding sources.

POTENTIAL IMPACTS TO USER RATES

	Phase 1 & 2 & 3; RD Only					
ITEM	25% Grant	50% Grant	75% Grant			
Total Project Cost	\$4,720,000	\$4,720,000	\$4,720,000			
RD Loan (40 Years)	\$3,502,500	\$2,335,000	\$1,167,500			
RD Grant	\$1,167,500	\$2,335,000	\$3,502,500			
Total Loan Amount	\$3,502,500	\$2,335,000	\$1,167,500			
Average Annual Loan Payment	\$125,246	\$83,498	\$41,749			
Total Loan Payments Over Life of Loan	\$5,009,854	\$3,339,903	\$1,669,951			
Total Interest Paid Over Life of Loan	\$1,507,354	\$1,004,903	\$502,451			
Average Annual Loan Coverage	\$12,525	\$8,350	\$4,175			
TOTAL PROJECT ANNUAL CAPITAL DEBT SERVICE CO	\$137,771	\$91,847	\$45,924			
Additional O&M Due To Project	\$15,200	\$15,200	\$15,200			
Short Lived Assets	\$15,827	\$15,827	\$15,827			
TOTAL PROJECT ANNUAL O&M COST INCREASES	\$31,027	\$31,027	\$31,027			
TOTAL PROJECT ANNUAL COST INCREASES	\$168,798	\$122,874	\$76,951			
INCREASE IN COST/MO/CONNECTION FOR PROJECT	\$49.01	\$35.68	\$22.34			
Less Increase in Cost/Mo/Connection Already Implemen	(\$11.43)	(\$11.43)	(\$11.43)			
ACTUAL INCREASE IN COST/MO/CONNECTION NECES	\$37.58	\$24.25	\$10.91			

QUESTIONS? COMMENTS?